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A Green function of time-independent multichannel Schr¨odinger equation is considered
in matrix representation beyond a perturbation theory. Nonperturbative Green functions
are obtained through the regular in zero and at infinity solutions of the multichannel
Schrödinger equation for different cases of symmetry of the full Hamiltonian. The
spectral expansions for the nonperturbative Green functions are obtained in simple form
through multichannel wave functions. The developed approach is applied to obtain
simple analytic equations for the Green functions and transition matrix elements for
compound multipotential system within quasiclassical approximation. The limits of
strong and weak interchannel interactions are studied.
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1. INTRODUCTION

The Green functions (GF) are applied often in physics because they make
it possible to sum over all the virtual intermediate states of a quantum system in
an analytic form without finding wave functions of the intermediate states partic-
ipating in a quantum interaction (Economou, 1979). To find the GF one needs to
obtain only two linearly independent solutions of the Schr¨odinger equation (SE),
from which we can construct the GF in simple analytic form. Sometimes only
the one solution may be enough to write out the GF (Ignat’ev and Polikanov,
1984).

If a quantum particle moves in a field of two or more than two potentials, one
needs to consider the multichannel SE and GF. For each of the perturbed channels
(potentials) the quantum particle has a set of unperturbed states. In a physics

1 Chemical Physics Theory Group, University of Toronto, Toronto, Ontario, Canada.
2 On leave from Physics Faculty, Voronezh State University, Voronezh, Russia.
3 To whom correspondence should be addressed at Chemical Physics Theory Group, University of
Toronto, 80 St. George Street, Toronto, Ontario, Canada M5S 3H6; e-mail: alexander.pegarkov@
utoronto.ca.

1597

0020-7748/02/0800-1597/0C© 2002 Plenum Publishing Corporation



P1: GYQ

International Journal of Theoretical Physics [ijtp] PP597-379791-10 September 2, 2002 17:10 Style file version May 30th, 2002

1598 Pegarkov

circumstance there are interactions of the channels with each other, which modify
the unperturbed states and induce quantum transitions of the particle between the
channels.

Ignat’ev and Polikanov (1984) applied a perturbative theory to obtain a mul-
tipotential (or multichannel) GF for the case where the interchannel couplings
are weak. In the case of strong couplings, where the interchannel interaction is
comparable with energy gap between the unperturbed quantum states, the pertur-
bation theory is inapplicable and one has to study the total Hamiltonian beyond
a perturbative approach. Aymaret al. (1996) and Pegarkov (2000) showed that in
theoretical applications the GF of the nonperturbative Hamiltonian is needed in
order to obtain a multichannel propagator and transition probability.

In the present paper the multichannel GF approach is developed for the non-
perturbative regime of quantum interactions. A quasiclassical approximation is
applied to construct the two- and three-channel GF and to obtain the transition
probabilities in a simple analytic form.

2. FORMALISM OF NONPERTURBATIVE MULTICHANNEL
GREEN FUNCTION

2.1. Multichannel Schrödinger Equation Beyond
Perturbative Approximation

The SE in the case of few interacting channels may be written as

{I E − H(R)}Φ(R) = 0,

I = ‖δi j ‖, 0= ‖0 · δi j ‖, i , j = 1, 2,. . . , k, (1)

where the HamiltonianH(R) is presented in the following matrix form:

H(R) = H0(R)+ V(R), (2)

H0(R) = ∥∥H0
i (R)δi j

∥∥ = −I
h2

2µ

d2

dR2 + U(R),

U(R) = diag{U1(R), U2(R), . . . , Uk(R)}, (3)

U(R) is the diagonal matrix containing the potentials of unperturbed channels
Ui (R) on its principal diagonal,Ui (R) is the potential of thei th channel,

V(R) = ‖Vi j (R)‖, (4)

is the nondiagonal matrix of the nonperturbative quantum couplings,∣∣∣∣( ∫ Φ∗m′ (R)V(R)Φm(R) dR

)
i i

∣∣∣∣ ∼ |Em − Em′ |,
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k is the number of all the quantum channels participating in the nonperturbative
interaction.

A solutionΦ(R) of matrix SE (1) is presented here in form of a (k× k) matrix

Φ(R) = ‖φi j (R)‖ (5)

which contains all the partial solution vectors of the multichannel equation (1).
If the channel coupling vanishes, the nondiagonal matrix Hamiltonian equa-

tion (2) converges to the unperturbed diagonal HamiltonianH0(R) equation (3)

lim
V(R)→0

H(R)→ H0(R). (6)

The nondiagonal matrix solution of the multichannel equation (1) should converge
to the diagonal solution of the SE with unperturbed Hamiltonian equation (3):

lim
V(R)→0

Φ(R)→ Φ0(R),

Φ0(R) ≡ ∥∥φ0
i (R)δi j

∥∥,

{I E0− H0(R)}Φ0(R) = 0 (7)

Equation (1) may be rewritten in the form of

(
E − H0

i (R)
)
φi j (R) =

k∑
m=1

Vim(R)φmj(R). (8)

The wave functionφi j (R) fits to the inhomogeneous SE for thei th channel. It is
easy to obtain from Eqs. (5)–(8), that each of the functionsφi j (R), j = 1, 2,. . . , k
is a perturbed partial wave in thei th channel. Therefore, one may say, that the
functional row [φi 1(R), φi 2(R), . . . , φik(R)] contains all the partial solutions for
the i th channel and is the partial vector solution of the matrix SE (1). Then, the
construction of the full multichannel solutions (MCS)Φ(R) of matrix SE (1) is as
follows:

(i) all the channel solutions of Eq. (1) are placed into MCS equation (5) by
rows,

(ii) the functionφi j (R) is a partial solution for thei th channel,
(iii) the partial waveφi j (R) is excited by another channelj interacted with

the i th one.

For the case of pair interaction of the channels at fixed pointXi j :

Vi j (R) = Vi j (Xi j )δ jm,

φi j (R) is the wave transmitted from thej th channel to thei th one after a passage
through channel interaction pointXi j .
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One has to emphasize that only the MCS equation (5) may be used to con-
struct the GF of the multichannel SE (1). It is simple to see below that the use
of fundamental solutions in vector representation gives incorrect equation for the
multichannel GF and its spectral expansion.

2.2. Green Function of Multichannel Schrödinger Equation

In consequence of Eqs. (6), (7) the limit of the nonperturbative multichannel
GF is

lim
V(R)→0

G(R, R′; E)→ G0(R, R′; E),

G0(R, R′; E) = ∥∥G0
i (R, R′; E)δi j

∥∥, (9)

where the diagonal matrix equation (9) fits the following inhomogeneous equation
with the diagonal unperturbed Hamiltonian equation (3):

{I E − H0(R)}G0(R, R′; E) = Iδ(R− R′)

and each of its components does the unperturbed one-channel SE as{
E − H0

i (R)
}
G0

i (R, R′; E) = δ(R− R′).

The time-independent GF of the multichannel nonperturbative Hamiltonian
equation (2) fulfils the following second order differential inhomogeneous matrix
equation:

{I E − H(R)}G(R, R′; E) = Iδ(R− R′) (10)

and is a nondiagonal matrix function of two variablesR and R′, which depends
on energyE as on a parameter:

G(R, R′; E) = ‖Gi j (R, R′; E)‖. (11)

The GF defined by Eqs. (10), (11) is continuous atR= R′:

G(R+ ε, R; E) = G(R− ε, R; E), ε → 0, (12)

and has a first kind discontinuity there:

d

dR
G(R, R′; E)

∣∣∣∣
R→R′+ε

− d

dR
G(R, R′; E)

∣∣∣∣
R→R′−ε

= 2µ

h2 I . (13)

Let me search a nonperturbative solution of the full inhomogeneous differ-
ential equation (10) in the form like the perturbative consideration of Ignat’ev and
Polikanov (1984),

G(R, R′; E) = 2µ

h2

{
Φ2(R)A(R′), R > R′,

Φ1(R)B(R′), R < R′,
(14)
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whereΦ1(R) andΦ2(R) are two linearly independent solutions of nonperturbative
SE (1), fitted the standard boundary conditions in zero and at infinity,A(R) and
B(R) are the matrices to be found. The multichannel functionsΦ1(R) andΦ2(R)
have the nondiagonal matrix form of Eq. (5).

Substituting Eq. (14) into Eq. (13) one gets

Φ′2A +Φ′1B = I . (15)

Premultiplying Eq. (15) by [Φ′2]−1 on the left and allowing for Eq. (12) yield

A = [Φ′2−Φ′1Φ
−1
1 Φ2

]−1
, (16)

if, of course,

det
[
Φ′2−Φ′1Φ

−1
1 Φ2

] 6= 0.

Like Eq. (16) one obtains, that

B = −[Φ′1−Φ′2Φ
−1
2 Φ1

]−1
,

det
[
Φ′1−Φ′2Φ

−1
2 Φ1

] 6= 0. (17)

Now let me show, that if both matrices of potentialsU(R) andV(R) are either
symmetric

V(R) = VT(R), U(R) = UT(R) (18)

or Hermitian (the superscript T means transpose, the superscript+ one does
Hermitian conjugation,A−1 is the inverse matrix toA. AA−1 = A−1A = I ):

V(R) = V+(R), U(R) = U+(R), (19)

then Eqs. (16), (17) can be expressed through the regular MCSΦ1 andΦ2.
Substituted Eqs. (2), (3) into Eq. (1), premultiplied it by functionΦ′1 or Φ′2

and used the fact, that

ΦΦ−1 = Φ−1Φ = I ,

one gets the equation[
Φ′1,2(R)Φ−1

1,2(R)
]′ −Φ′1,2(R)

[
Φ−1

1,2(R)
]′ = 2µ

h2 [U(R)+ V(R)− EI ]. (20)

In order to find the functions [Φ−1
1,2]
′ the following property of the first derivative

of a matrix function should be used (p is an integer, see Lancaster, 1969)

d

dt
[A(t)]−p = −A−p(t)

A(t)

dt
A−p(t),

then, [
Φ−1

1,2(R)
]′ = −Φ−1

1,2(R)Φ′1,2(R)Φ−1
1,2(R). (21)
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Substituting Eq. (21) into Eq. (20) yields the matrix nonperturbative Riccati
equation in the form like the perturbative one obtained earlier by Ignat’ev and
Polikanov (1984):

f ′1,2(R)+ [f1,2(R)]2 = 2µ

h2 [U(R)+ V(R)− EI ], (22)

where

f1,2(R) ≡ Φ′1,2(R)Φ−1
1,2(R).

Under the condition of Eq. (18) the functionsfT
1,2(R) fit the Riccati equation

(22) too. Therefore, if the equation

f1,2(R0) = fT
1,2(R0)

is true in a fixed pointR0, then it is true for anyR

f1,2(R) = fT
1,2(R).

Making some transformations with Eqs. (16), (17) and substituting Eq. (21)
to them permit to deduce finally the following equation for the nonperturbative GF
(11) of the symmetric multichannel Schr¨odinger Hamiltonian

H(R) = HT(R), (23)

G(R, R′; E) = 2µ

h2

{
Φ2(R)W−1ΦT

1(R′), R > R′,

Φ1(R)[WT]−1ΦT
2(R′), R < R′,

(24)

whereW is an invertibleR-independent matrix

W = ΦT
1(R)[Φ2(R)]′ − [ΦT

1(R)
]′Φ2(R) = const6= 0. (25)

The multichannel GF equation (24) obeys to the following symmetry
properties

G(R, R′; E) = GT(R′, R; E),

G+(R, R′; E) = G∗(R′, R; E).

If the GF (24) is a real one (of, in general, complex energy,E 6= E∗), then

G+(R, R′; E) = G(R′, R; E∗).

Starting from Eq. (22), assuming both potential matrices to be Hermitian,
Eq. (19) and the energy to be real, one can deduce the following equations for the
nonperturbative GF of the Hermitian Schr¨odinger Hamiltonian

H(R) = H+(R), (26)
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G(R, R′; E) = 2µ

h2

{
Φ2(R)W−1Φ+1 (R′), R > R′,

Φ1(R)[W+]−1Φ+2 (R′), R < R′,
(27)

W = Φ+1 (R)[Φ2(R)]′ − [Φ+1 (R)]′Φ2(R) = const6= 0,

G(R, R′; E) = G+(R′, R; E). (28)

If the Hamiltonian equation (2) has no symmetry

H(R) 6=
{

HT(R)

H+(R)
, E 6= E∗ (29)

the nonperturbative GF equation (11) may be written only in its general form as

G(R, R′; E) = 2µ

h2

{
Φ′2(R)

[
Φ2(R′)−Φ′1(R′)Φ−1

1 (R′)Φ2(R′)
]−1

, R > R′,

Φ1(R)
[
Φ′2(R′)Φ−1

2 (R′)Φ1(R′)−Φ′1(R′)
]−1

, R < R′.
(30)

without the simplifications made due to Eqs. (23), (26). The GF equations (24),
(25), (27), (28), obtained here nonperturbatively, correspond with those applied by
Wolken (1972), Aymaret al. (1996), Han and Yarkony (1996) to various problems
in laser spectroscopy and chemical physics.

Let me consider now the multichannel Green function equation (24).
Using the determination of inverse matrix and properties of invertible

matrices provided by Lancaster (1969) gives the multichannel Green function
components as

Gi j (R, R′; E; R > R′) = 2µ

h2

1

|W|
∑k

l ,m=1 φ
2
i l (R)φ1

jm(R′)Aml,

Gi j (R, R′; E; R < R′) = 2µ

h2

1

|W|
∑k

l̃ ,m̃=1 φ
2
i l̃
(R)φ2

j m̃(R′)Al̃m̃,


|W| ≡ detW =

k∑
l=1

k∑
αl=1

W
(
φ1
αl m, φ2

αl l

)
Aml, (31)

Aml = (−1)m+l
∑

Pl

(−1)t(Pl )
l∏

r=1

l∑
αr=1

W
(
φ1
αr r , φ

2
αr r

)
,

Pl = {ζ1, ζ2, ζ3, . . . , ζk}, (32)

where Pl is a permutation{ζ1, ζ2, ζ3, . . . , ζk} of k− 1 following numbers 1, 2,
3, . . . , l − 1, l + 1, . . . , k written in any sequence,t(Pl ) is number of transposi-
tions which bring the{ζ1, ζ2, ζ3, . . . , ζk} permutation to the normally graduated
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one {1, 2, 3,. . . , l − 1, l + 1, . . . , k} (the Pl permutation takes all the (k− 1)!
possible permutations),

W(u, v) = uv′ − vu′.

2.3. Spectral Expansion of Nonperturbative Multichannel Green Function

A spectral expansion of the nonperturbative GF can be obtained via eigen-
functions of multichannel Hamiltonian equation (2). So, the eigenfunctionsΨm(R)
of the symmetric matrix Hamiltonian equation (23)

H(R)Ψm(R) = EmΨm(R)

satisfy the following conditions of orthonormalization and completeness∫
dRΨm(R)ΨT

m′ (R) = Iδmm′ ,∑
m

Ψm(R)ΨT
m(R′) = Iδ(R− R′). (33)

Substituting Eq. (33) into Eq. (10) and its simple transformations yield the follow-
ing spectral expansion for the multichannel Green function equation (24)

G(R, R′; E) =
∑

m

Ψm(R)ΨT
m(R′)

E − Em + i 0
.

The eigenfunctions of the Hermitian Hamiltonian equation (26) fit the
equations ∫

dRΨm(R)Ψ+m′ (R) = Iδmm′ ,∑
m

Ψm(R)Ψ+m(R′) = Iδ(R− R′).

and the spectral expansion for its Green function equation (27) is

G(R, R′; E) =
∑

m

Ψm(R)Ψ+m(R′)
E − Em + i 0

.

The spectral expansion for the multichannel Green function of the Hamiltonian
without symmetry equations (29), (30) cannot be obtained because the set of its
eigenfunctions does not form a basis.

2.4. Exact Expression of Nonperturbative Green Function
Through the One Regular Multichannel Solution

The GF of the symmetric multichannel Hamiltonian, Eq. (24) can be simply
expressed through only the regular in zero MCSΦ1(R). From Eqs. (24), (25)
one gets
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Φ2(R) = Φ1(R)
∫ R

|a>

[
ΦT

1(X)Φ2(X)
]−1

W dX, (34)

where|a> is the vector limit, that

Φ−1
1 (R)Φ2(R)

∣∣
|R>=|a> = 0.

Substituting Eq. (34) into Eq. (24) yields the expression of the nonperturba-
tive GF equation (24) through only the regular in zero multichannel solution in the
form of

G(R, R′; E) = 2µ

h2 Φ1(R)J(R> )ΦT
1(R′),

J(R) =
∫ R

|a>

[
ΦT

1(X)Φ2(X)
]−1

W dX, R> = max{R, R′}.

The GF of the Hermitian multichannel Hamiltonian equation (27) may be
written through Wronskian matrix equation (28) as

G(R, R′; E) = 2µ

h2 Φ1(R)J(R> )Φ+1 (R′),

where

J(R) =
∫ R

|a>

[
Φ+1 (X)Φ2(X)

]−1
W dX.

So, the nonperturbative multichannel GF may be expressed in simple ana-
lytic forms of Eqs. (24), (27), or (30). The form to write out the GF depends on
symmetry of the full multichannel Hamiltonian equation (2) and can be various
for different kinds of quantum interchannel interactions formed the nondiagonal
coupling matrix equation (4).

The general expressions for GF, obtained in this section, are important for
physics applications because, as it has been demonstrated by Wolken (1972),
Aymar et al. (1996), Han and Yarkony (1996), Pegarkov (2000), they permit to
calculate analytically the quantum transition probabilities without perturbative re-
strictions upon the interchannel interaction. Within a quasiclassical approximation
one can obtain simple analytic equations for the nonperturbative multichannel so-
lutions and Green’s function.

3. QUASICLASSICAL APPROXIMATION FOR MULTICHANNEL
SCHRÖDINGER EQUATION

3.1. Matrix Representation of Multichannel Wave Solutions

Within the quasiclassical approximation the matrix Schr¨odinger equation may
be integrated in a nonperturbative matrix form where the multichannel solutions
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of the coupled equations (1)Φ(R) are obtained in the following analytic form for
all the points ofR-variable excepted few singular points:

Φ(R) = E+(Ri , R)a+ + E−(Ri , R)a−, (35)

whereE±(R1, R2) are the diagonal matrices of quasiclassical waves,a± are the
nondiagonalR-independent matrices of wave amplitudes:

E±(R1, R2) = ∥∥λ−1/2
m (R2)F±m (R1, R2)δml

∥∥, (36)

a± = ∥∥a±ml

∥∥, m, l = 1, 2,. . . , k. (37)

In a classical permitted pointR the wave in themth channelF±m (R1, R2) has
the form of

F±m (R1, R2) = exp{±i L m(R1, R2)}, (38)

and in a classical forbidden one

F±m (R1, R2) = exp{s|Lm(R1, R2)|}, (39)

where the signscan be equal with 1 or−1 in dependence on the boundary condition
for themth channel,hλm(R) is the classical kinetic momentum in themth channel,
Lm(R1, R2) is the reduced action along the channel potentialUm(R)

λm(R) = h−1[2µ(E −Um(R))]1/2, Lm(R1, R2) =
∫ R2

R1

λm(R) dR. (40)

The quasiclassical representation for the multichannel solution equations
(35)–(40) is true if the condition∣∣∣∣dλ−1

m (R)

dR

∣∣∣∣¿ 1 (41)

is fulfilled for all the channel potentials.

3.2. Quasiclassical Propagation of Multichannel Solutions
Through Singular Points

The multichannel solution equation (35) propagates through the isolated turn-
ing point as follows:

if the φ f
i j (R) component in a classical forbiddenR-region has the following view

φ
f

i j (R) = |λi (R)|−1/2 ai j

2
exp{−|Li (Ri , R)|}, (42)

then its form in a classical permittedR-region is

φ
p
i j (R) = λi (R)−1/2ai j cos(|Li (Ri , R)| − π/4); (43)
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if the wave component in the classical permitted region is

φ
p
i j (R) = λi (R)−1/2{a+i j exp{i [|Li (Ri , R)| + π/4]}

+a−i j exp{−i [|Li (Ri , R)| + π/4]}}, (44)

then in the classical forbidden region it is

φ
f

i j (R) = |λi (R)|−1/2(a+i j + a−i j ) exp{|Li (Ri , R)|}. (45)

Equations (42)–(45) are a simple multichannel representation of the well-known
one-channel formalism of Fr¨oman and Fr¨oman (1965).

The propagation through a branch point (the point of crossing of diabatic
potentials and that of quasicrossing of adiabatic ones) changes the wave ampli-
tudes equation (37). Here we consider the crossing picture, which the following
conditions are true for

Li À 1, |σi j | À 1, (46)

Li ≡ Li (Ri , R′i ), σi j ≡ Li (Ri , Xi j )− L j (Rj , Xi j ). (47)

In a point R between two neighbouring branch pointsXi j−1, Xi j , Xi j−1 <
R < Xi j (Fig. 1) the multichannel solution, Eq. (35) may be written as a sum of
incoming and outcoming matrix waves as

Φ< (R) = E+(Xi j , R)a+< + E−(Xi j , R)a−< . (48)

Fig. 1. Intersecting potentials in general multichannel case in dependence on variableR. Ri (R′i ) is the
left (right) turning point in unperturbed potentialUi (R), Xi j is the branch point (the point of crossing
of theUi (R) andU j (R) potentials,Xi j = X ji ).
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For theR-point between the next branch pointsXi j , Xi j+1, Xi j < R < Xi j+1 the
multichannel solution may be written as

Φ> (R) = E+(Xi j , R)a+> + E−(Xi j , R)a−> . (49)

The amplitudesa±< anda±> in Eqs. (48), (49) are connected by thek× k matrix
Ni j : {

a+> = Ni j a+<

a−> = N∗i j a
−<

. (50)

TheNi j matrix has the following structure:
its componentsNml = δml for all m, l 6= i , j ,

its componentsNii , Ni j , Nji , Nj j form the 2× 2 matrixℵ,

ℵ =
{

Nii Ni j

Nji Nj j

}
.

(51)

The ℵ-matrix connects the wave amplitudes of the two interaction channelsi
and j on the left and right sides from the nonadiabatic pointXi j and is ex-
pressed in different analytic forms within either adiabatic basisor an adia-
batic basisfor the total energyE lying either above or under the crossing point
energyUi (Xi j ) (caseE < Ui (Xi j ) is so-calledunderbarrier nonadiabatic tran-
sition, E > Ui (Xi j ) is so-calledabovebarrier nonadiabatic transition). Nikitin
and Umanskii (1984), Eu (1984), and Nakamura (1987) studied in detail the
2× 2 matrix of nonadiabatic transitionsℵ in the problems of atomic
collisions.

For the abovebarrier case theℵmatrix may be expressed as (the branch point
lies into the classical permitted region, the diabatic and adiabatic curves are marked
as those in Fig. 2)

– in the diabatic basis

ℵd =
{√

Pi j exp[iψi j ] −√1− Pi j exp[iφi j ]√
1− Pi j exp[−iφi j ]

√
Pi j exp[−iψi j ]

}
, (52)

– in the adiabatic basis

ℵa =
{√

1− Pi j exp[iφi j ]
√

Pi j exp[iψi j ]

−√Pi j exp[−iψi j ]
√

1− Pi j exp[−iφi j ]

}
, (53)

The nonadiabatic parametersPi j , ψi j , φi j describe the interaction of the inter-
secting channel potentialsUi (R) andU j (R). They depend on velocity of effective
particle in theXi j point, on the form of the potential curves and their reciprocal
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Fig. 2. Branches of diabatic (solid lines) and adiabatic
(dashed lines) potentialsUd

i , j (R) andUa
i , j (R) form diabatic

and adiabatic bases. The subscripts of diabatic and adiabatic
curves are the sames ifR < Xi j .

position, on the interchannel coupling strength|Vi j (R)|. The functional form of
the nonadiabatic parameters is determined by a model of interchannel nonadia-
batic transitions. The choice of the model is subjected to the curves picture to be
appropriate for the transition process. The model admitted gives only the analytic
equations for the nonadiabatic parameters but the general form of the multichan-
nel transition matrixN equations (51)–(53), connecting the quasiclassical wave
amplitudes equation (50), is the same for all the models.

One can see from Eqs. (48)–(53) that the multichannel approach, developed
here, may be applied with the same success either for the diabatic or adiabatic
basis. A basis from the two ones is only a representation (a picture) to describe
a two-curve crossing problem. So, one may use the diabatic basis, say about the
crossing diabatic potentials Udi (R) and do the calculations with the diabatic 2× 2
matrix ℵd equation (52). On the other side one may use the adiabatic basis, say
about thequasicrossing adiabatic potentialsUai (R) and calculate with the adiabatic
matrixℵa equation (53). This choice of the basis brings no formal changes to the
construction of the nonperturbative multichannel wave solutions equation (35).

Therefore, the nonperturbative multichannel approach elaborated in this paper
is an universal one to solve the multichannel Schr¨odinger equation independently
on the model of wave amplitude connection and type of basis used and may be
applied to studymultipotential problemsin quantum mechanics.
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3.3. Nonperturbative Propagation of Regular Solutions
of Multichannel Schrödinger Equation

Using the rules formulated above permits to construct the regular in zero
and regular at infinity nonperturbative solutions of the multichannel Schr¨odinger
equation (1). In theR-point lying between two branch pointsXi j andXi j+1, Xi j <
R < Xi j+1 both solutions are

Φ1(R) = E+(Xi j , R)Aa+L + E−(Xi j , R)A∗a−L , (54)

Φ2(R) = E+(Xi j , R)Ba+R + E−(Xi j , R)B∗a−R, (55)

whereA, B, a±L , a±R are the followingR-independent matrices:

A = Ni j F+(Xi j−1, Xi j )Ni j−1 · · ·N13F+(X12, X13)N12, (56)

B = F+(Xi j+1, Xi j )N+i j+1 · · ·N+nn−2F+(Xnn−1, Xnn−2)N+nn−1, (57)

F±(X1, X2) = ∥∥F±m (X1, X2)δml

∥∥, [F±]T = F±,

a±L ,R =
∥∥(a±L ,R)mδml

∥∥, [a±L ,R]T = a±L ,R.

]
(58)

Here we consider the general case, whereE∗ 6= E and, therefore,L∗m 6= Lm. In
opposite case, Eq. (58) are supplimented by the follows: [F±]+ = F∓, [a±L ,R]+ =
a∓L ,R.

The channel left-side amplitudes are (both for open and closedm-channels)

in the classical permitted region

(a±L )m = am

2
exp

{
±i

[
Lm(Rm, X12)− π

4

]}
,

in the classical forbidden region

(a±L )m = am

2
exp{−|Lm(Rm, X12)|}.

The channel right-side amplitudes are

i) for the case of the closedm-channel:

in the classical permitted region

(a±R)m = bm

2
exp

{
±i

[
Lm(R′m, Xnn−1)+ π

4

]}
,

in the classical forbidden region

(a±R)m = bm

2
exp{−|Lm(R′m, Xnn−1)|},
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ii) for the case of the openm-channel:

(a±R)m = b±m exp

{
±i

[
Lm(Rm, Xnn−1)+ π

4

]}
,

wheream, bm, b±m are the constants.

The matrix amplitudes of regular solutions, equations (54), (55) are connected
with each other by means ofT-matrix as

Aa+L = T>
1 (i j )A∗a−L , (59)

Ba+R = T>
2 (i j )B∗a−R. (60)

Including Eqs. (54), (55) to the matrix Wronskian, Eqs. (25), (28) deduces
its independence on theR-variable. In the quasiclassical approximation equations
(25), (28) are formally equal with each other and have the form of

W = 2i {a−L Sa+R − a+L S∗a−R},
S= A+B

= N+12F
−(X12, X13)N+13 · · ·N+nn−2F−(Xnn−2, Xnn−1)N+nn−1. (61)

The matricesA andB, Eqs. (56), (57) are the quasiclassical multichannel
propagators evolving the regular channel waves along the multichannel passage
from their origins to theR point: A propagates the multichannel wave from zero
andB propagates it from infinity. Both propagators allow for only the interchannel
interactions existed between the wave origin and theR point. So, theA-wave
propagator involves the interactions lying between zero andR and no ones lying
between infinity andR; the B-wave propagator involves the interactions lying
between infinity andRand no ones lying between zero andR. For a quantum state
in such multicurve potential the regular in zero solution, Eq. (54) must be equal to
the regular at infinity one, Eq. (55) in anR-point as well as their first derivatives
must be equal to each other in the same point too.

4. TWO- AND THREE-CHANNEL NONPERTURBATIVE GREEN
FUNCTIONS IN QUASICLASSICAL APPROXIMATION

Within the method developed above one obtains the very simple analytic
equations for the multichannel Green functions in the cases of two and three
intersecting potentials.

The componentsGi j (R, R′; E; R < R′) of the multichannel Green functions,
Eqs. (24) and (27) may be received fromGi j (R, R′; E; R > R′) in accordance with
symmetry of the functions as
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in order to get theGi j (R, R′; E; R < R′)-component of Eq. (24) it needs to replace
the variablesRandR′ with each other in theG ji (R, R′; E; R > R′)-component

Gi j (R, R′; E; R < R′) = G ji (R, R′; E; R > R′)|R↔R′ ; (62)

for the components of Eq. (27) the rule is

Gi j (R, R′; E; R < R′) = [G ji (R, R′; E; R > R′)|R↔R′ ]
∗. (63)

TheG ji 6= j (R, R′; E; R > R′)-component is received from theGi j 6=i (R, R′; E; R >
R′) one as follows:

G ji 6= j (R, R′; E; R > R′) = Gi j 6=i (R, R′; E; R > R′)|R↔R′ . (64)

Therefore, one needs only to write out the diagonal componentsGi= j (R, R′; E;
R > R′) and nondiagonal ones likeG ji> j (R, R′; E; R > R′). The other compo-
nents may be obtained from them by means of simple replace of indexes and/or
variables as given by Eqs. (62)–(64).

4.1. Two-Channel Nonperturbative Green Functions

A two-channel Green function is written in the form of either Eq. (24) or
Eq. (27), that depends on full energyE and types of the participated channel
potentials.

4.1.1. Potentials “Attractive+ Attractive”

The channel potentials are shown in Fig. 3(a). In this case the Wronskian is
equal to

|W| ≡ detW = Pr1r2+ (1− P)r12r21, (65)

where designationsr1,2, r12,21 are given in Appendix.
In the classical permitted region on the left side from branch pointX12 the

Green function components are

R1,2 < R < X12,

G11(22)(R, R′; E; R > R′) = − 2µ

h2|W|
[
λ1(2)(R)λ1(2)(R

′)
]−1/2

× cos
(
L1(2)(R1(2), R′

)− π/4)Q2(1)(R), (66)

G12(R, R′; E; R > R′) = 2µ

h2|W| [λ1(R)λ2(R′)]−1/2
√

P(1− P)

× sin(L1−L2− σ12+ψ +φ) cos(L1(R1, R)−π/4)

× cos(L2(R2, R′)− π/4). (67)
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Fig. 3. System of two diabatic potentials marked as
1, 2. The dashed curves show adiabatic potentials
designated asUa

1,2(R). (a) The “attractive+ attrac-
tive” system, (b) the “attractive+ repulsive” system,
(c) the “repulsive+ repulsive” system.

In the classical permitted region on the right side from the branch point
one has

X12 < R < R′1,2,

G11(22)(R, R′; E; R > R′) = − 2µ

h2|W|
[
λ1(2)(R)λ1(2)(R

′)
]−1/2

× cos
(
L1(2)(R1(2), R

)− L1(2)+ π/4)F2(1)(R
′),
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G12(R, R′; E; R > R′) = 2µ

h2|W| [λ1(R)λ2(R′)]−1/2
√

P(1− P)s

× cos(L1(R1, R)− L1+ π/4)

× cos(L2(R2, R′)− L2+ π/4),

where

s= sin(φ − σ12− ψ),

F1,2(R) = Pr1,2 cos(L2,1(R2,1, R)∓ ψ − π/4)

+ (1− P)r21,12cos(L2,1(R2,1, R)± σ12∓ φ − π/4),

Q1,2(R) = Pr1,2 cos(L2,1(R2,1, R)− L2,1± ψ + π/4)

+ (1− P)r12,21cos(L2,1(R2,1, R)± σ12− L1,2∓ φ + π/4),

S1,2(R) = Pd1 cos(L2,1(R2,1, R)∓ ψ − π/4)

+ (1− P)d2 cos(L2,1(R2,1, R)± σ12∓ φ − π/4)

and other designations are presented in Appendix.

4.1.2. Potentials “Attractive+ Repulsive”

See Fig. 3(b); here

|W| = Pr1d1+ (1− P)d2r21. (68)

For the classical permitted region on the left side from the branch pointX12 the
component of nonperturbative Green function matrix are

R1,2 < R < X12,

G11(R, R′; E; R > R′) = − 2µ

h2|W| [λ1(R)λ1(R′)]−1/2 cos(L1(R1, R′)− π/4)

× [ Pd1 cos(L1(R1, R)− L1− ψ + π/4)

+ (1− P)d2r21 exp{i [L1(R1, R)+ π/4]}],

G12(R, R′; E; R > R′) = − 2µ

h2|W| [λ1(R)λ2(R′)]−1/2
√

P(1− P)d1d2i ei L 1

× cos(L1(R1, R)− π/4) cos(L2(R2, R′)− π/4),
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G22(R, R′; E; R > R′) = − 2µ

h2|W| [λ2(R)λ2(R′)]−1/2 cos(L2(R2, R′)− π/4)

× [ Pr1d1 exp{i [L2(R2, R)+ π/4]} + (1− P)d2

× cos(L2(R2, R)+ σ12− φ − L1+ π/4)],

and for the classical permitted region on the right side from the branch point
X12:

X12 < R < R′1,

G11(R, R′; E; R > R′) = − 2µ

h2|W| [λ1(R)λ1(R′)]−1/2

× cos(L1(R1, R)− L1+ π/4)S2(R′),

G12(R, R′; E; R > R′) = 2µ

h2|W| [λ1(R)λ2(R′)]−1/2
√

P(1− P)scos(L1(R1, R)

− L1+ π/4) exp{i [L2(R2, R′)+ π/4]}.

G22(R, R′; E; R > R′) = − 2µ

h2|W| [λ2(R)λ2(R′)]−1/2

× F1(R′) exp{i [L2(R2, R)+ π/4]}.

4.1.3. Potentials “Repulsive+ Repulsive”

See Fig. 3(c). The Wronskian matrix determinant is equal to unity

|W| = 1.

For the classical permitted region on the left side from the branch pointX12 the
Green function matrix is

R1,2 < R < X12, m= 1, 2,

Gmm(R, R′; E; R > R′) = −2µ

h2 [λm(R)λm(R′)]−1/2 cos(Lm(Rm, R′)− π/4)

× exp{i [Lm(Rm, R)+ π/4]},
G12(R, R′; E′R > R′) = 0,

and for the classical permitted region on the right side from the branch point
X12:
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X12 < R,

G11(R, R′; E; R > R′) = −2µ

h2 [λ1(R)λ1(R′)]−1/2

× exp{i [L1(R1, R)+ π/4]}S2(R′),

G12(R, R′; E; R > R′) = 2µ

h2 [λ1(R)λ2(R′)]−1/2
√

P(1− P)s

× exp{i [L1(R1, R)+ π/4]} exp{i [L2(R2, R′)+ π/4]}.

G22(R, R′; E; R > R′) = −2µ

h2 [λ2(R)λ2(R′)]−1/2

× exp{i [L2(R2, R)+ π/4]}S∗1(R′).

4.2. Three-Channel Nonperturbative Green’s Functions of Potentials
“Attractive + Attractive + Attractive”

The terms system is shown in Fig. 4. By the same way as above one obtains
the three-channel Green matrix components as

G(R, R′; E) = ‖Gml(R, R′; E)‖, m, l = 1, 2, 3 for the classical permitted region
lying between the branch pointsX13 andX23 are

X13 < R < R23,

G11(R, R′; E; R > R′) = 2µ

h2|W| [λ1(R)λ1(R′)]−1/2 cos(L1(R1, R)− L1

+π/4) {R2 cos(L1(R1, R′)+ ψ13− π/4)+R1

× cos(L1(R1, R′)− σ13+ φ13− π/4)},

G12(R, R′; E; R > R′) = 2µ

h2|W| [λ1(R)λ2(R′)]−1/2
√

P13(1− P13)P23(1− P23)

× s1s2 cos(L1(R1, R)− L1+ π/4)

× cos(L2(R2, R′)− π/4),

G13(R, R′; E; R > R′) = 2µ

h2|W| [λ1(R)λ3(R′)]−1/2
√

P13(1− P13)

× s1F2(R′) cos(L1(R1, R)− L1+ π/4),
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Fig. 4. System of three attractive diabatic potentials marked as 1, 2, 3. The
dushed curves show adiabatic potentials.

G22(R, R′; E; R > R′) = 2µ

h2|W| [λ2(R)λ2(R′)]−1/2 cos(L2(R2, R′)− π/4)

×{P23[ P13t1t3+ (1− P13)t31t13] cos(L2(R2, R)

− L2− ψ23+ π/4)+ (1− P23)[ P13t1t32

+ (1− P13)t31t12] cos(L2(R2, R)

− σ23− L3+ φ23+ π/4)},

G23(R, R′; E; R > R′) = 2µ

h2|W| [λ2(R)λ3(R′)]−1/2
√

P23(1− P23)

× s2F1(R′) cos(L2(R2, R)−π/4),

G33(R, R′; E; R > R′) = 2µ

h2|W| [λ3(R)λ3(R′)]−1/2F1(R′)F2(R),

where

s1 = sin(σ13− φ13+ ψ13),

s2 = sin(σ23− L2+ L3− φ23− ψ23),

F1(R) = P13t1 cos(L3(R3, R)− ψ13− π/4)

+ (1− P13)t31 cos(L3(R3, R)+ σ13− φ13− π/4),

F2(R) = P23t2 cos(L3(R3, R)− L3+ ψ23+ π/4)

+ (1− P23)t23 cos(L3(R3, R)− L2+ σ23− φ23+ π/4), (69)
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R1 = (1− P13){P23t2t13+ 1(1− P23)t12t23},
R2 = P13{P23t2t3+ (1− P23)t23t32},
|W| = −t1R2− t31R1,

and other magnitudes are written in Appendix.

4.3. Quasiclassical Nonperturbative Green Functions in Limits
of Weak and Strong Nonadiabatic Couplings

In this subsection the quasiclassical multichannel Green functions are
calculated in the weak interchannel coupling and strong interchannel coupling
limits analytically. An aim here is to obtain the limit expansions for the functions
and to show, that the weak coupling expansion of the multichannel Green func-
tion corresponds with the perturbative expansion of full nonadiabatic
resolvent.

4.3.1. Two Interacting Channels

The components of two-channel Green function can be written in a general-
ized form as follows:

Gmm(R, R′; E) = A
a1+ αa2

b1+ αb2
, m, l = 1, 2, (70)

Gm6=l (R, R′; E) = Ã

√
α

b1+ αb2
, (71)

whereα is

α = 1− P

P
, (72)

A, Ã, a1, a2 are the functions ofR and R′, but b1, b2 are independent on the
R-variable.

The Green functions, Eqs. (70), (71) may be expanded over theα-parameter,
Eq. (72)

α < 1. (73)

as theTaylor–Maclaurinsseries:

Gmm(R, R′; E) = A

b1

{
a1+ a2b1− a1b2

b1
R(b2, α)

}
, (74)

Gm6=l (R, R′; E) = Ã

b1

√
α

{
1− b2

b1
R(b2, α)

}
, (75)
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whereR(b, α) is the following series:

R(b, α) =
∞∑

n=1

(−2b)n−1

n!
αn. (76)

The principal nonperturbative dependence of the two-channel Green func-
tions, Eqs. (70), (71) concentrates into theR(b, α)-term, Eq. (76). The other mag-
nitudesA, Ã, a1, a2, b1, b2 depend on the interchannel interaction much weaker
through only the phasesψ, φ.

For the opposite case, where

α > 1, (77)

the Green functions, Eqs. (70), (71) may be expanded over theα−1-parameter and
Eqs. (74), (75) transform to

Gmm(R, R′; E) = A

b2

{
a2+ a1b2− a2b1

b2
R(b1, α−1)

}
, (78)

Gm6=l (R, R′; E) = Ã

b2

√
α−1

{
1− b1

b2
R(b1, α−1)

}
. (79)

Therefore, in the case Eq. (73) the two-channel Green functions poles are due
to theb1-term (see Eqs. (74), (75)), while in the case Eq. (77) the poles are due to
another termb2 (see Eqs. (78), (79)). Thus, the poles in the weak interaction limit
(so-calleddiabatic limit)

α ¿ 1, φ→ φ0, ψ → ψ0 (80)

are quite defferent from those in the strong interaction limit (so-calledadiabatic
limit)

α À 1, φ→ φ∞, ψ → ψ∞ (81)

Within the Landau–Zener model of the nonadiabatic interchannel transi-
tions it can be calculated directly in an analytic form, that in the limit of weak
interchannel interaction, Eq. (80) the two-channel Green function components
‖Gml

two(R, R′; E)‖ are expressed through the diabatic one-channel Green functions
G0

m(R, R′; E) of unperturbed potentialsUm(R). So, theG22 andG12 components
have the form of

R, R′ < X12, α ¿ 1, δ ¿ 1, (82)

G22
two(R, R′; E) = G0

2(R, R′; E)+ 〈G0
2(R < R1)V21(R1)G0

1(R1, R2)

×V12(R2)G0
2(R2 > R′)

〉
R1,R2

, (83)

G12
two(R, R′; E) = 〈G0

1(R < R1)V12(R1)G0
2(R1, R′)

〉
R1
. (84)

The diagram representation for Eqs. (83), (84) is given in Fig. 5(a) and (c).
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Fig. 5. Diagram representation of two-channel nonperturbative Green function. The diagonal
componentGαα(R, R′; E) is pictured as broad solid line (a), the unperturbed Green function
G0
α(R, R′; E) is drawn as the narrow one (b), the nondiagonal componentGαβ (R, R′; E) is

presented as diagram (c).

4.3.2. Three Interacting Channels

The same results can be obtained for the three-channel Green function
‖Gml

three(R, R′; E)‖, m, l = 1, 2, 3, where the weak interaction limit, Eqs. (80), (82)
is putted firstly for theV13 coupling and then for both couplingsV13, V23:

X13 < R, R′ < X23,

δ13¿ 1, δ23 ∼ 1

G33
three(R, R′; E; R > R′) = G33

two(R, R′; E; R > R′)+ 〈G33
two(R > R1)V31(R1)

×G0
1(R1, R2)V13(R2)G33

two(R2 > R′)
〉
R1,R2

, (85)

G13
three(R, R′; E; R > R′) = 〈G0

1(R > R1)V13(R1)G33
two(R1 < R′)

〉
R1

, (86)

G23
three(R, R′; E; R < R′) = G23

two(R, R′; E; R < R′)+ 〈G23
two(R < R1)V31(R1)

×G0
1(R1 < R2)V13(R2)G33

two(R2 < R′)
〉
R1,R2

, (87)

δ13, δ23¿ 1,

G33
three(R, R′; E; R > R′) = G0

3(R, R′; E; R > R′)+ 〈G0
3(R < R1)V32(R1)

×G0
2(R1, R2)V23(R2)G0

3(R2 > R′)
〉
R1,R2

+ 〈G0
3(R > R1)V31(R1)G0

1(R1, R2)V13(R2)

×G0
3(R2 < R′)

〉
R1,R2

, (88)
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G13
three(R, R′; E; R > R′) = 〈G0

1(R > R1)V13(R1)G0
3(R1 < R′)

〉
R1

, (89)

G23
three(R, R′; E; R < R′) = 〈G0

2(R < R1)V23(R1)G0
3(R1 > R′)

〉
R1
. (90)

In Eqs. (83)–(90) the〈 〉R symbol stands for the integration over theR
variable, estimated by means of stationary phase method;V12(R) is the inter-
action of theU1(R) andU2(R) unperturbed diabatic potentials,V23(R) is that of
the U2(R) andU3(R) unperturbed diabatic potentials. The diabatic one-channel
Green functionsG0

i (R, R′; E) in the quasiclassical approximation are presented in
Appendix.

In the strong coupling limit, Eq. (81) the multichannel Green functions are
expressed through the one-channel Green functions of the reconstructed adiabatic
potentialsUa

m(R) (see Figs. 3 and 4) in the forms like Eqs. (83)–(90).

5. NONPERTURBATIVE MATRIX ELEMENTS OF QUANTUM
TRANSITIONS WITHIN QUASICLASSICAL APPROXIMATION

The time-independent multichannel Green functions obtained above may
be applied to calculate the quantum transition probabilities beyond perturbation
approximation.

The nonperturbative transition matrix element may be expressed via the
T-transition operator as

Tf i =
〈
χ0

f |T(E)|χ0
i

〉
,

whereχ0
i , f are the perturbation-free wave functions of the channels,T(E) stands

for the nonperturbative transition operator

T(E) = V + V G(E)V

and theG(E)-operator fits the followingexactoperator equation

G(E) = G0+ V G(E)V (91)

with perturbation-free resolventG0. The coordinate representation of resolvent
G(E) (91) is the nonperturbative matrix Green function.

A transition matrix element with the nonperturbative Green function can be
written through the components of the Green matrix (11) as

M f i =
k∑

l ,m=1

〈
χ0

f (R)|Vf l (R)Glm(R, R′; E)Vmi(R
′)|χ0

i (R′)
〉
. (92)

Within the quasiclassical approximation one can obtain simple analytic equa-
tions for the nonperturbative transition matrix element (92). As an example of them
only the case of attractive channel is considered here, where two channels interact
with each other nonperturbatively and the variables lie in the classical permitted
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region on the left side from the branch pointX12, R > R′ (see Subsection 4.1.1.,
Eqs. (66), (67)).

Using a stationary phase method to estimate the integrals in Eq. (92) gives

M f i =
A∗f Ai h2

µ|W|
[{√

P(1− P) sin(L1− L2− σ12+ ψ + φ)

×C f 2(X f 2) cos(σ f 2− q̃ f 2)− (Pr2 sin(σ f 1+ L1+ ψ − q̃ f 1)

+ (1− P)r21 sin(σ f 1+ σ12+ L2− φ − q̃ f 1))C f 1(X f 1)
}

×C1i (X1i ) cos(σ1i − q̃1i )+
{√

P(1− P) sin(L1− L2− σ12+ ψ + φ)

×C f 1(X f 1) cos(σ f 1− q̃ f 1)− (Pr1 sin(σ f 2+ L2− ψ − q̃ f 2)

+ (1− P)r12 sin(σ f 2− σ12+ L1+ φ − q̃ f 2))C f 2(X f 2)
}

×C2i (X2i ) cos(σ2i − q̃2i )
]
, (93)

where

Ci j (R) = Vi j (R)

[
πµ

h2λi (R)|qi j |
]1/2

qi j (X) =
(

dUi (R)

d R
− dUj (R)

d R

)∣∣∣∣
R=X

q̃i j = π

4
sign(qi j ),

Ai , Aj are the amplitudes of initial and final channel wave functions.
In the limit of the very weak interaction

P = 1; 1− P = 0;

φ = π

4
; ψ = 0,

Eq. (93) takes the form

Mw
f i = −

A∗f Ai h2

µ

[
sin(σ f 1+ L1− q̃ f 1) cos(σ1i − q̃1i )C f 1(X f 1)C1i (X1i )

cosL1

+ sin(σ f 2+ L2− q̃ f 2) cos(σ2i − q̃2i )C f 2(X f 2)C2i (X2i )

cosL2

]
,

which corresponds to the well-known perturbative approximation over perturbation
|V12|.

In the limit of the very strong interaction

P = 0; 1− P = 1;
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φ = φs; ψ = ψs

Eq. (93) transforms to

Ms
f i = −

A∗f Ai h2

µ

[
sin
(
σ f 1+ Ls

1− q̃ f 1
)

cos(σ1i − q̃1i )C f 1(X f 1)C1i (X1i )

cosLs
1

+ sin
(
σ f 2+ Ls

2− q̃ f 2
)

cos(σ2i − q̃2i )C f 2(X f 2)C2i (X2i )

cosLs
2

]
, (94)

whereLs
1 and Ls

2 are the reconstructed quasiclassical actions over the adiabatic
potentials,

Ls
1 = σ12+ L2− ψs,

Ls
2 = −σ12+ L1+ ψs.

Equation (94) corresponds to the perturbative approximation over|V12|−1 which
is known as anstrong-field perturbative approximation.

6. CONCLUSION

The time-independent nonperurbative approach presented in this paper has
permited to obtain the multichannel wave functions and Green functions in the an-
alytic form, which are useful to consider the principal picture of stationary quatum
transitions and to receive simple equations for their cross sections beyond pertur-
bation theory. The presented multichannel method permits to get the equations in
the form to be appropriate for a simple physics analysis without routine numerical
computations. The quasiclassical functions obtained above may be used, if the
conditions, Eqs. (41), (46), are fulfilled.

APPENDIX

Let me introduce the following designations for the terms of two-channel
functions used above:

r1 = cos(L1+ ψ),

r21 = cos(L1− σ12+ φ),

r2 = cos(L2− ψ),

r12 = cos(L2+ σ12− φ),

d1 = eiψ ,

d2 = ei (φ−σ12),
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and for the three-channel functions:

t1 = cos(L1+ ψ13),

t12 = cos(σ23− σ13− L2+ φ13− φ23),

t2 = cos(L2+ ψ23),

t13 = cos(L3+ σ13− φ13− ψ23),

t3 = cos(L3− ψ13− ψ23),

t23 = cos(L3+ σ23− φ23),

t31 = cos(σ13− L1− φ13),

t32 = cos(σ23− L2+ ψ13− φ23),

The diabatic one-channel Green functionG0
m(R, R′; E) within the quasiclas-

sical approximation is

for an attractive potential

G0
m(R, R′; E) = −2µ

h2 [λm(R)λm(R′)]−1/2

× cos(Lm(Rm, R< )− π/4) cos(Lm(Rm, R> )− Lm + π/4)

cosLm

for a repulsive potential

G0
m(R, R′; E) = −2µ

h2 [λm(R)λm(R′)]−1/2

× cos(Lm(Rm, R< )− π/4) exp{i [Lm(Rm, R> )+ π/4]},
where

R> = max{R, R′}, R< = min{R, R′}.
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